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I. INTRODUCTION

Let WI;'I denote the Sobolev space of functions in CIr - II [0, II whose
(r ~ I )st derivative is absolutely continuous and whose rth derivative is an
clement of L f. [0, II, i.e.,

WI;I = WI;' [0, II = U: fir II abs. cant. and Ilprlll, < 00 f

B I;) shall denote those functions f in WI~) for which Ilpr) II <1.
Sattes, in his dissertation [12 J (see also [13]), considered the problem of

approximating a continuous function, in the uniform norm, by functions of
BI;1 . He obtained the following result.

THEOREM 1.1 (U. Sattes). Let r> 2 and g E C[O, I j\B~,'. Then
1* E B~l is a best approximation to g, in L CfJ (such a best approximation
necessarily exists) if and only if there exists a subinterval (a, (3) c [0, II and
a positive integer M> r + I for which the following conditions hold

(i) f*II(1,131 isaPerlectsplineofdegreerwithexactlyM~r-·1 knots
and If*"I(x)1 = I a. e. on la,(3I, i.e., there exists a = ¢o < ¢I < ... <
¢l/ r I < ¢l/ r = (3 for which

f*lr)(X)=f;(~lr. ¢i -I < X < ¢;.

i = I,..., M - r, where e = + I or -1, fixed.

(ii) (g-I*)(x) equioscillates on M points a=x, < ... <X\I=(3 in
Ia. IJ I. i.e..

(g-f*)(x;)=e5(-I)ill g -f*ll oc ' i= 1,...,M,

where e5 = + I or -I, fixed.
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(iii) Xiii <~i<Xi+r' i= I, .."M-r--l.

(iv) £ = (-IY<5, or equivalently f*lrl(X) = sgn((g -- f*)(x\f)) j(Jr

X E (~M- r- I ' ~M - r)'

Furthermore every best approximation to g(x)from BI~) agrees with f*(x)
on la,p].

This theorem evoked our interest for various reasons. Firstly, the class of
approximants, unlike those generally considered in problems of approx
imation theory, is neither a finite dimensional subspace nor is it a varisolvent
family of functions (see Rice III J). Secondly the fact that one obtains an
interval of uniqueness, namely Ia, Pj, is reminiscent of results obtained in
approximating continuous functions by splines of some fixed degree with a
fixed number of variable knots (see, e.g., Braess [I ]). Thirdly this result is an
additional example of the importance of Perfect splines which have been
shown to be fundamental in a number of extremal problems in L J (see, e.g"
Fisher and Jerome 13/, Karlin 171, Pinkus 110/, Tichomirov 114[ and
references therein).

Motivated by Sattes' result we were led to a consideration of best approx
imations to continuous functions, in the uniform norm, from the class

(!( = ~lf(X): f(x) = II K(x, y) hey) dy, ley) ~ hey) ~ u(y) \1,
.()

where u, IE CIO, II, fixed, u > I, and where K(x, y) is a strictly totally
positive kernel. For this class we obtain existence, uniqueness and charac
terization of the best approximant to g E C[ 0, I[ from (!( (Theorem 3.1).

Stimulated by Theorem 3.1 and very much using the full characterization
obtained therein, we then discuss best approximations from sets of the form

.7"" I//(x): f(x) = \" (_I)i; I II/ I K(x, y) dy.
i 0 . {"

and

For each of the sets j" and.Y: (which are very much analogous to Perfect
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splines) we prove uniqueness of the best approximation as well as a full
characterization result (Theorem 4.1) which is similar to that obtained in
Theorem 3.1. In Section 4 we also consider the problem

min~11 g - eJllef :JE .Y/~, e? Of

as well as the analogous problem for .'1': and once again, we are able to give
a concise description of the unique best approximant (Theorem 4.2).

In Section 5, we replace the set ,.R' byR'u: = lJ(x): J(x) =
J~ K(x, y) d,u(y)}, where ,u is any nonnegative finite Borel measure and
obtain analogues to Theorems 4.1 and 4.2. An interesting problem somewhat
similar in structure to the above is given in Theorem 5.6.

2. PRELIMINARIES

In this work we shall consider functions both of the form J(x) =

.r~ K(x, y) h(y) dy, where hE L oc [0, 1j, and of the form J(x) =
Ji) K(x, y) d,u(y), where ,u is a finite Borel measure on [0, 1], and where
K(x, y) is a strictly totally positive kernel. This section contains preliminary
material which shall be used in the subsequent sections.

DEFINITION 2.1. A kernel K(x, y) E C( [0, 11 X [0, 1j) IS said to be
strictly totally positive, abbreviated STP, if

for all choices ofO<x l < ... <xn< 1,0< YI < ... < Yn< 1 and all n? I.

A full exposition of the theory of totally positive kernels may be found in
the books of Gantmacher and Krein [4 j, and Karlin [6 J. One particular
property of STP kernels which very much interests us in this work, and
which is of fundamental importance in problems of L oc-approximation is
that of variation diminishing. To fully explain this property, we shall use the
following definitions.

DEFINTION 2.2. Let x=(x" ... ,xm)ElR m. Then S~(x) denotes the
number of sign changes in the sequence obtained from x"... , x m by deleting
all zero entries. S + (x) denotes the maximum number of sign changes in the
sequence x, '00" x m ' where we allow each zero entry to be replaced by 1 or
-1.
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DEFINITION 2.3. Let fECI 0, II. We define S + (f) = sup S + If (x, ),... ,

f(x m) I, where the supremum is taken over all sets 0 ~ x, < ... < X m~ I, and
m arbitrary.

DEFINITION 2.4. A finite Borel measure !1 defined on 10. I I is said to
have m relevant sign changes, denoted by S (J1) = m. if

(i) there exist disjoint sets A I , ... , Am +' of 10, II with A; <A; +' (i.e.,
x < y for all x E Ai' Y E A i + I)' and ur~~,' Ai = 10, II·

(ii) ,u(A;)=tO. i=I... .. m+L and!1 is either a nonnegative or
nonpositive measure on Ai'

(iii) ,u(A;l!1(A;, ,) < O. i= I... .. m.

When considering functions of the form f(x) = .Ii, K(x. y) h(y) dy for
h E L w, then by S - (h) = m we mean that S - (J1) = m, where h(y) dy =
d!1Cv).

THEOREM 2.1. Let K(x. y) be an STP kernel and !1 a finite Borel
measure. Set

.1

f(x) = I K(x. y) d!1CI')·
.(1

Then.

(i) S'(f)~S (J1).

(ii) if S" (f) = S (J1) < 00. then f and !1 exhibit the same arrangement
of generalized signs. That is to say that if the first nonzero sign of!1 near
zero is. say. positive. then f(O)? O. and iff(O) = O. then f(c) <0 for all
c > 0 sufficiently small.

The proof of the above theorem is essentially to be found in Karlin
16. p. 2331· However. for completeness. and in order that the reader have a
familiarity with the techniques. we present the proof here. The proof depends
on the following facts to which we shall have frequent recourse.

DEFINITION 2.5. Let u i E CIO. II. i = 1.... , m + I. jU j , .... u m +' f is said to
be a Tchebycheff (T+ ) system if

U(X.I Xm'I)=det(U.(x.»m.11 >0
. L m + 1 J / /.j I

for all choices ofO~x,<",<xmi'~1.We say that juj ..... um.1f is a
Descartes system if {u i , .... ' uiJ is a TT system for all choices of
1~ i, < ... < ik ~ m + 1. and k = 1,.... m + I.
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The following proposition may be found in Karlin and Studden 18, p. 251.

PROPOSITION 2.2. Assume that jU I ,... , um + I f is a Descartes system on
10. II. and

m+ I

- \'u(x) - _ aiu;(.>.::).
i I

(i) S + (u) <S-(a). where a = (a l •· ... am + I)'

(ii) If S+ (u) = S (a). then the same arrangement ofgeneralized signs
occurs in S + (u) and S (a). Thus. if ai > 0. G j = 0. j = I.... , i - L then
u(o) ;) °and if u(o) = 0. then u(e) <°for all [; >°sufficiently small.

Proof of Theorem 2.1. Assume that S . (P) = m, and let jA i Ir+11 be as in
the definition of S - (P). Without loss of generality, we assume that
(-I)'~ 1,u(A i ) > 0, i = I .... , m + 1. Form

u;(.>.::) = (-1)'+1 I K(x, y)d,u(y),i= 1, .... m+ 1.
.' '1,

We claim that since K(x, y) is STP, jUI,...,um.1f is a Descartes system

on 10, II· To prove this fact. let 1 <i l < ... < ik <m + I. and °<XI < ... <
x k < 1. Then, by the basic composition formula. see Karlin 16, p. 171,

since K is STP and 1,u(Ai)1 >°for all i = I ...., m + 1.
Thus

nt- 1

f(x)= \' (-I)i+lul>.::)
i I

and from Proposition 2.2. the statements of Theorem 2.1 follow.

DEFINITION 2.6. A function g E qQ. 11 is said to equioscillate on k
points if there exist °<x I < ... < x k < I for which

i = I,.... k.

where G = +I or -I, fixed. If. in addition, [; = +1, then we say that g
equioscillates on k points, starting positively, while if G = -I, then we say
that g equioscillates on k points, starting negatively.

The following easily proven results shall be used repeatedly throughout
this work.
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PROPOSITION 2.3. Assume that g, h E ClO, II, II gll"c ? Ilhll ' and g
equioscillates on k points. Then

Furthermore, if S +(g - h) = k - 1 and the equioscillations of g(x) start
positively, then the generalized sign pattern of (g - h )(x) starts positively.

For each n. set

An = g: ~ = (~I , ... , ~n)' ~o = °< ~I < ... < ~n < ~11' 1= 1 f

and for each ~ E An' let

~i I < Y < ~i' i = L .., n + 1.

PROPOSITION 2.4. (a) If~ E An' 11 E A k • then

S (h~ ± h~) ~ minjn, kf.

(b) If~,l1EAn' then

3. MAIN THEOREM

Let u, IE CIO, 11 and u(y) > I(y) for all y E [0. II. (This condition may
be weakened.) Set

If = Iflu, II

= )!(X): f(x) = { K(x, y) h(y) dy, I(y) ~ h(y) ~ u(y), Y E lO, 11 ~ .

THEOREM 3.1. Assume that K(x, y) is STP and g E ClO, 11\ If. Then
there exists a unique best approximant to g from If. This best approximant

.1

f*(x) = I K(x, y) h*(y) dy
. 0

is uniquely characterized as follows.
There exists a nonnegative (finite) integer M, knots ~t = °< ~t < ... <

~~ < 1 = (~+ l' M + 1 points of equioscillation 0 ~ xt < '" < x~+ I ~ I, and
an e = ± I, such that
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(i) £(g - f*)(x;*)(-lr' I = II g- f*II((, i = 1,... , M + 1

(ii) iff, = I, then a.e.
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h*(y) = u(y),

=l(y),

while if £ = -I, then a.e.

h*(y) = u(y),

=l(y),

~;*_ 1 < y < ~i*' i odd

~i~'l < y < ~;*, i even

~;* I < }' < ~i*' i even

~;* I < }' < ~;*, i odd.

Furthermore, if for any g E C10, 11 there exists a nonnegative integer M,
and a function f* E /( satisfying (i) and (ii), and if II g - f* lief> 0, then
grl. /f.

Remark. Upon completion of this research, C. A. Micchelli brought to
our attention a preprint of K. Glashoff, which has since appeared as [5]. In
this elegant paper, Glashoff proves the above theorem, except for the full
characterization. He proves existence, uniqueness, and also that the above h*
is either equal to u or I with a finite number of jumps. Glashoffs proof is
somewhat differnt than ours in that we also prove the full characterization
which will be used in the next sections. His motivation in considering such a
problem stems from a finite bang-bang principle which has applications in
optimal control theory.

We divide the proof of the theorem into a series of lemmas.

LEMMA 3.1. To each g E Cia, II, there exists a best approximant
f* E /f.

Proof The set 1h:l(y):<h(y):<u(y)f is a bounded set and K:h(-)-->
.1'(', K(., y) h(y) dy is a compact linear operator. Hence /f is compact and a
best approximation necessarily exists.

LEMMA 3.2. Let f* be a best approximant to g E C[O, 1J\ /( from /t.
Then (g - f*)(x) equioscillates on at most a finite number of points.

Proof Since g - f* is uniformly continuous on the compact interval
10, II, there is a 6> 0 such that I(g - f*)(x) - (g - f*)(y)1 <
211 g - f* lief' whenever Ix - yl < 6. Thus the distance between consecutive
points, of a set on which g - f* equioscillates, is at least 6. This proves the
finiteness of the set.

For any Lebesgue measurable set E of [a, 11, m(E) shall denote its
Lebesgue measure.
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LEMMA 3.3. Let

E = ~ y: h*(y) = u(y) or h*(y) = I(yn.

Then m(E) = 1.

Proof Assume m(E) < 1. Let

F = \1':1(1')+~:<h*(I'):<u(I').··~1
" /' . n" .". n\'

Since F~+ I <;: F~, and n~~ I F~ = E, it follows that limn_.f m(F~) = m(E) < 1.
Thus there exists an n for which m(Fn) > O. Assume that (g - f*)(x)
equioscillates on exactly N + 1 points (N? 0). Since m(Fn ) > 0, there exist

points °= 130 < 131 < ... <13N <13.\+ 1= 1, for which

Let G; = (fJ; 1,13;) n F". and set

v;(x) = I K(x, y) dy,
. (ii

i= L.. .. N+ 1.

i= I ....,N+ 1.

Since K(x, y) is an STP kernel, the set Iv I'.... Z',\ • I f spans a Descartes
system on 10, I I. By the well known characterization theorem. the zero
function is not the best approximation to g ~ f* from this subspace. For
some z' = L~+/ a;v;. we have II g - f* - viii < 11 g.- f*II,· Choose
AE (0. II such that IAa;1 < I/n. i = 1.. .. , N + 1. Then f* +Az· E Ir. and
II g - f * - Av 11 I < II g .- f* III . This contradicts the optimality of f *. Thus
m(E) = 1.

As in Definition 2.4, given measurable sets I and J of 10, 11, we say that
I <J if x < y for all x E I and y E J.

LEMMA 3.4. Assume that there exist M + I sets II < ... < I" . I with
m(1;) > 0, j = I ..... M + I, for which a.e.

or

h*( y) = u(y),

= I(y),

h*(y) = u(y).

= I(y).

on I,. k odd,

on I,. k even.

on I" k ez'en,

on I" k odd.

Then g ~ f* equioscWates on at least M + I points, starting positively, or
negatively, respectively.
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Proof Assume that the former case holds, i.e., h*()') = u(y) on II'
etc.... We must show that g - I* equioscillates on at least M + I points,
starting positively. Suppose that g - I* equioscillates on exactly N + I
points. If N > ./Iv!. then we can, by deleting suitable points of equioscillation.
obtain our result. Set

1'J,() = I K(x. .1') dy.
,'i

i= l... .. M+ I.

Case I. g - I*equioscillates on N + 1 points. N ~ M. starting
negatively.

For some 1'(X)=L,\111aj1'j(x), we have Ilg-I*-vII J <llg--I*llf
since ~1'J~ III spans a Descartes system on 10. II· Since g - I*
equioscillates on N + I points. it follows that l' = (g - I*) - (g - f'" - 1')

has at least N sign changes. Furthermore g - I* starts negatively and
therefore l' starts negatively. Thus by Proposition 2.2. a;(-I ); > 0.
i = I..... N + l. Now for all AE (0. II.

Ilg-I*-Ai'll <llg-I*IIJ

and for A> 0, sufficiently small, f* +AV E/{. This contradicts the
optimality of I * so that case I cannot occur.

Case II. g - I* equioscillates on N + I points, N ~ M - I, starting
positively.

For some vex) = L;H/ b;v;(x), we have II g - f* - vll x < II g - f*
As in case I, it follows that v has exactly N sign changes, and since g - I*
starts positively, b;(-I); > 0. i = 2,... , N + 2. A contradiction now follows as
in case I.

Since neither case I nor case II may obtain, the lemma is proved.
Because g - f* must equioscillate on at least M + 1 points and since. by

Lemma 3.2. M must be finite, it therefore follows that there exist (a ....,~t;)
as in the statement of the theorem. We have thus proven that every best
approximation f* from I'( to g E qO. 11\ I'( must satisfy statements (i) and
(ii) of the theorem. From this fact, it is a simple matter to prove the
uniqueness of the best approximation. This may be done via a convexity
argument. However, we wish to prove more, namely, that any function f*
satisfying statements (i) and (ii) of the theorem is necessarily the unique best
approximant.

LEMMA 3.5. Let gE qo, 11\ I'( and let f* E I'( satisfv statements (i)
alld (ii) of Theorem 3.1. Then f* is the unique best approximant to g lrom
~/.
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Proof. Let

.1

f*(x) = I K(x, y) h*(y) dy
"0

satisfy statements (i) and (ii) of the theorem and assume, without loss of
generality, that [; = 1. Let

.1

f(x) = I K(x, y) hey) dy E. ,
. 0

satisfy II g - f II 00 ~ II g - f* II c£ J ok f *. Since (g - f *)(x) equioscillates on
at least M + 1 points, starting positively, then from Proposition 2.3,

S +(( g - f *) - (g - f)) = S + (f - f *) ;) M.

Furthermore, if equality holds, then the orientation of the generalized sign of
(f - f*)(x) starts positively. Now,

.1

(f - f*)(x) = I K(x, y)(h - h*)(y) dy.
·0

Thus from Theorem 2.1(i),

S+(f-f*)~S (h-h*).

Since l(y)~h(y)~u(y) for allyE 10, II, S (h~h*)~M. Thus,

S+(f-f*)=S (h-h*)=M.

Because E; = I, the orientation of the generalized sign of (h - h*)( y) starts
negatively. This fact contradicts Theorem 2.1 (ii), proving the lemma.

LEMMA 3.6. Let g E CI 0, II and assume that there exists an f* E 1/
satisfying conditions (i) and (ii) of the statement of the theorem. for which
II g - f* 11,1 > 0. Then g E ,.

Proof. Let

.1

f*(x) = I K(x, y) h*(y) dy,
·0

where h*(y) has M knots. Assume g E 1/. Thus

.1

g(x) = I K(x, y) h(y) dy
·0
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for some h satisfying l(y) ~ h(y) ~ u(y) for all y E [0, 11. Since (g -- f*)(x)
equioscillates on at least M + 1 points,

by Theorem 2.1(i). From the form of h*, S-(h-h*)~M. Thus
M = S +( g - f *) = S - (h - h *).

A contradiction now ensues from part (ii) of Theorem 2.1 as in the proof
of Lemma 3.5.

This lemma completes the proof of Theorem 3.1.
It is generally impossible to determine the number M. In fact as g

approaches the set #', this number may well blow up to 00. If, however,

.1

g(x) = I K(x, y) h(y) dy,
- 0

where h(y)~u(y) for all yE [0, 11, then M=O, and h*(y)=u(y).
Similarly if h(y) ~ l(y), then M = °and h*(y) = l(y).

At times, bounds on M are available. For example, if h(y) E [l(y), u(y)j
for y E [0, 1], and if S-(h - h) = r for every h for which I~ h ~ u, then
M ~ r. The proof of this fact is an immediate consequence of Theorem 2.1.

Since M is in general an unknown quantity, it is natural to ask for some
sort of algorithmic method by which we may deduce its value. In this next
section we attempt to provide such a method.

4. ApPROXIMATIONS BY GENERALIZED PERFECT SPLINES

In this section we consider best approximations from functions of the form
J,\ K(x, y) h(y) dy, where Ih(y)1 = 1, a.e., the number of sign changes of h is
at most n, and h has a fixed orientation. Thus we here assume that u( y) = 1
and l(y) = -1. (It should, however, be noted that all results obtained in this
section apply mutatis mutandis to the case of general u, IE C[ 0, I j, with
I( y) < u( y), all y.) Hence in this section we have

#' = )f(X): f(x) = .1
0
' K(x, y) h(y) dy, II h liD ~ 11·

For each nonnegative integer n, let An be as defined in Section 2. An shall
denote the closure of the simplex An' as given by
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To each ~ E An' set f~ (x; ~) = '[.i' 0(-1 V' I Ji: J K(x. y) dy, and

!I .~ i . I

f,:(x;~)= \' (-1)'1 K(x,y)dy=··fl/(x;~).
i U .'!, i

(The signs + and - on the function /'J denote the sign of h( y) on the first
interval (~o. ~I)') Now, let

The interior of r 1/ is to be regarded as the set 111/ (x; ~) : ~ E AI/}' with a
similar statement holding forr ,: . The setsr,~ and 1" ,; are closed and
compact and

For notational ease, for given ~ E AI/' we shall also let

~i _ I < y < ~i' i = 1,.... n + 1.

We shall study the problem of approximating, in L f [0. II. functions
g E C[O, I] by elements of r;; and of r,:.

THEOREM 4.1. Let gEClO,lj and assume that K(x,y) is an STP

kernel.

(a) There exists a unique best approximation f*(x;~*)Erl/ to g
from, 9' n-' f * is either the best approximation to g from. " or ~* E A nand
f* is uniquely characterized by the property that g - f* equioscillates on
exactly n + I points, starting positively.

(b) There exists a unique best approximation f*(x; ~*) E 1/ to g
fromr ,; . f * is either the best approximation to g from If, or ~ * E A" and
f* is uniquely characterized by the property that g - f * equioscillates all

exactly n + I points, starting negatively.

Remark. Note that the characterization of the best approximation given
above is very similar to that given in Theorem 3.1. The important difference
is that the orientation between the points of equioscillation of (g - f* )(x)
and the sign of h*(y) is reversed if f* is not the best approximation from
If.

For convenience, the proof of this theorem is also divided into a series of
lemmas.

LEMMA 4.1.

7'" andfrom
To each g E C! 0, II. Ihere exisls a best approximanl from

ttl ,;.
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Proof The lemma follows from the fact that. /' nand.:1': are compact.
Because of the symmetry between.:1';; and. /' ,;, we shall only prove the

theorem for :1' ~-. The proof of the theorem for :1',; is entirely analogous.
Before proving the existence of a function f *(x; ~ *) EY,; with ~ * E A II '

for which g - f* equioscillates on n + I points, starting positively. under
the assumption

minjllg-fll" :fE/'n}>minjllg~fl'f:fE #1 (I)

we shall first prove that any such function is necessarily the unique best
approximation.

LEMMA 4.2. Assume that there exists an f * E Y,; satisfving the
conditions given in Theorem 4.I(a). Then f* is the unique best approx
imation to g from. Y I~'

Proof If (I) does not hold, then the uniqueness of the best approx
imation from.:1';; is a consequence of the uniqueness proven in Theorem 3.1.
Assume that (I) holds, and g - f* equioscillates on n + I points. (If the
equioscillations start negatively, then (l) does not hold by Theorem 3.1.)

Assume f~· (x; ~) E .? ~-, and

II g(. ) ~ f,~ (. ; ~)II ex :::;; II g(.) - f* (. ; ~ *)11 f .

Since g - f* equioscillates on n + 1 points

S+((g-f*)-(g-f;;))?:n.

Now

and

.1

f;;(x;~) - f*(x; ~*) = I K(x, y)'h~(y) - h~.(y) Idy.
·0

Thus by Theorem 2.1,

However, ~ * E A n and ~ E An' and thus by Proposition 2.4.

This contradiction proves the lemma.

h4033 2 6
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It thus remains to prove the existence of an f* E .7 n satisfying the
conditions of the theorem under assumption (I). Our proof is based on an
induction argument and repeated use of Theorem 3.1. It is therefore
necessary that we first prove the case n = O.

LEMMA 4.3. Theorem 4.1 holds for n = O.

Proof We assume that (I) holds for n = O. The set 7 0 is simply the
function fo (x) = -.U, K(x, y) dy. Since (I) holds, II g -- fo II f > 0, and there
therefore exists a point x* such that I g(x*) - f(;(x*)1 = II g - fa . If for
some x* E 10, II, (g - f(;)(x*) = -II g - fo Ilx' then from Theorem 3.1, we
contradict (I). Thus (g - fo )(x*) = II g - fo ilx and at no point does
g - f(l take on the value -II g - fo II .

LEMMA 4.4. Theorem 4.1 holds for all n.

Proof Let 11? I, and assume that the results of the theorem hold for
k ~ 11 - I. Let f * E 7,; denote a best approximation to g from 7,~ which
is not the best approximation from If. We distinguish three cases.

CGse 1. ~ * E An' Assume that g- f * does not equioscillate on a set of
11 + I points. Then there exists a

v(x) = \' GiK(x, ~n
;- 1

such that II g - f* - (' Ilf < II g - I* Ilf . Thus for ), E (0, I),

IIg-I*-Al'llf ~ g-I* -Ac,

where

c = II g - I* II f - il g - r - (' il f > O.

Let 0= (6] ,... , 6n ). Assume that the 6 i are sufficiently small so that
max\~r ~i' + 6d < minj~t+ I' ~r+] + 6 i • If, i = 0, 1,... ,11, where ~ri = 60 =
6n + I = 0, and ¢~'+ I = l. Then,

n .l! + DJ

In(x;~*+o)-I*(x;~*)= \' 2(-IY I K(x,y)dy
;-] '(i

n

= \' 2(-I)j 6j K(x, ~n + 0(0).
; ]

Let 6; = (1 )(-1 )jG;A for A> 0, small. Then,

I n (x; ~ * + B) - I*(x; ~ *) - AI' = O(A).
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Ilg - f;(·; ~* + o)lloc ~ II g - f* - Avll oo + Ilf;(·; ¢* + 0) - f*- Avll x

~ II g - f*lI", -AC + O(A),

which, since c > 0, contradicts the optimality of f *.
If there are more than n + 1 points of equioscillation or if the equi

oscillations start negatively, then f* is optimal in , by Theorem 3.1. So the
result holds.

Case II. f * E ,9;_1' Since f * is the best approximation to g from
,9;;_1 (and not from An it follows from the induction hypothesis that h* has
exactly n - 1 sign changes at ¢t < ... < ¢:_I and that g - f* equioscillates
at exactly n points, starting positively. Put ,;,; = 1. Then there exists a
function

v(x) = \' ajK(x. ¢j*)
i 1

such that lIg-f*-vllcx: <lIg-f*llc We wish to apply the analysis of
case I. To do this we must choose 6" < 0, so that ,;,; + 6" E 10, 1). It
therefore suffices to show that a,,(-I t -I > 0. Since g - f* has n points of
equioscillation, starting positively, it follows, by the reasoning given in the
proof of Lemma 3.4, that v = (g - f*) - (g - f* - v) has exactly n - I
sign changes, starting positively. Thus, by Proposition 2.2, ai(-I)' t I> 0.
i = L .., n, and the result follows.

Case III. f* E ,/ ,: -I' This case is totally analogous to case II except
that we add the point ,;d' = 0.

Since the boundary of/,~ is contained in r" 1 U r,~ I' the proof of
Theorem 4.1 is complete.

Let }'";; and ,r: be as defined above. We are now interested in the
problem

minlll g - cfllcx: : fEr,; , c ~ Of

for g E C10, 11. Our approximating class is now the set of functionsfof the
form

II .ljll

f(x) = C ~ (-I)J+ 1 I K(x, y) dy,
i 0 • (;

where c ~ 0, arbitrary, and ';0 = 0 ~ ';1 ~ ... ~ ~" ~ ,;" + 1= 1. The difference
between this problem and the previous one is that we allow c to vary over

, . We, of course, also ask this same question with;Y'" replaced by ,r ,: .
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THEOREM 4.2. Let g E ClO. II and K(x, y) be an STP kernel. Set

c* = supic: c ~ 0, minjll g - cJt : J E j'" f = minlll g - c;fll I : J E #'1 I·

Theil.

(i) O~c*<OCJ.

(ii) minjh - cJIII..r E 1'" ,c ~ Of = minjh - c*fllcJ: f E 7" f.
(iii) For c ~ c*. minjll g -- cflii : J E 7" f is a strictly decreasing

function oj c. and minlll g - cJt : J E 7" 1= minlll g- cJ : f E #'f.
(iv) For c> c*. minlll g - cft : J E 7" I is a strictly increasing

jimction of c. and minill g - cfll, : f E 7"" f > min;11 g - cfll, : f E #'1·

(v) Let I*(x) = .I'il K(x, y) h*(y) dy be the uniquefunction in 7" lor
which

min lllg-c*f :fE j'"l=llg-c*f*II"

Then. if g i c~f*.

(a) S (h*)=k~n.

(b) (g-c*I*)(x) exhibits at least l,l~n+l. points of
equioscillation.

(c) l~k+2.

The proof of this theorem we again divide into a series of lemmas. For
ease of notation. let j;, E . 7";, satisfy

minlllg-cfll :IE 7""I=llg-cj;.

LEMMA 4.5. Let c > 0 and

minlllg-cf :IE·4'f=lIg-cf·

Then for all dE 10. c).

minlll g - dfIICl;: I E K'f = II g - dldll,,:·

Proof The lemma is trivial for d = O. We therefore take dE (0, c). First
assume that g * cf.. Thus gEe #' and since d < e. g E d#'. From the
uniqueness and characterization of Theorem 3.1. we have that

min~11 g - dJ : f E #'1> minlll g - eIII, : f E#'l·

Letj;.(x) = .lil K(x. y) hcCY) dy. Thus S (hJ = k(c) ~ n. and if k(c) = n. then
the sign pattern of hcCv) starts negatively. Let J,i E #'. IJ(x) =
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.Ib K(x, y) h:( y) dy denote the unique function in ~ for which

min 111 g - dill,}): I E ~~ = II g - dl: lien· We shall prove that l.i = hi'
Set S - (h,n = ked). Thus (g - dld)(x) exhibits, by Theorem 3.1, at least

ked) + I points of equioscillation. Since II g - dl,; > II g ~ cf.11 J' the
function (g - dld)(x) - (g - cf.)(x) = (cf. - dld)(x) exhibits at least ked)
sign changes on 10, 11 (Proposition 2.3). Because,

.1

(cle - dld)(x) = j K(x, y)(chc - dhd)(y) dy,
• 0

it follows from Theorem 2.1 that

k(d):::;; S+ (ch. - dfd) <S (che~ dh,j).

Since c > d, S-(chc ~ dhd):::;; k(c) <n. Thus ked) <k(c) <n, which implies
that I,; E r;; UJ":. If k(d)(=k(c» = n, then again by Theorem 2.1, the
orientation of the sign patterns of (g - dfd)(x) ~ (g - cf.)(x) and cheLv)
dh:( y) must agree. Since the latter function has n sign changes, starting
negatively, (g - dfd)(x) has exactly n + 1 points of equioscillation, starting
negatively. Theorem 3.1 now implies that the sign pattern of h,j(y) must
start negatively since df,j is the unique best approximation to g from d ~
and S-(hd) = n. Thus l,j Er,; and the lemma is proved in this case.

Assume now that g == cle • Since d < c, g E dR', and
min{llg-dlllec:/E.R'f=llg-dl,jllcx;>O, where l,j(x) is as defined
above. Once again k(d):::;;S+(cf.-dld)<S-(chc~dhd)<k(c)<n.We
prove that I,; E r;; by the same reasoning as that given above. This proves
the lemma.

The above lemma implies that the set of c ~°for which

minlll g - c/II XJ : IE.?;;} = minill g - c/ll(~,: I EI1'},

in an interval (closed by continuity considerations), whose left hand endpoint
is zero. Note that in the above lemma we proved that if °<d < c <c *, then
k(d):::;; k(c), an interesting fact in and of itself. We also proved

LEMMA 4.6. For c <c*, c < 00, min!11 g - cf :I E 1"" f is a strictly
decreasing lunction 01 c, and

minill g - c/llcx : I E r,~ f = min!11 g - c/ll'J: : I E ~f·

LEMMA 4.7. c* < oo.

Proof min{11 g - cf : I E ~f < II g < 00 for all c ~ 0, while it is
easily shown that min {II I :I E r,~} > 0. This latter fact assures us that
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lim min~11 g - eft: f E 1"" f = 00.
1'[ 'f

Thus we cannot have

minjllg-efllu :fE 1"" f=min11Ig-efIIJ :fE #'~

for all e? o.

LEMMA 4.8. Let g E qO. II and e* < e < d. Then

II g - eJ;·IIJ < Iig - dfd

Proof Set J;.(x) = L\ K(x. y) hc(Y) dy and J;tC->::) = JI) K(x. y) hkv) dy.
From Theorem 4.1. S-(hJ=S-(hd)=n, both hc(Y) and h,tCY) start
negatively, while (g - eJ;.)(x) and (g - dfJ)(x) each exhibit exactly n + I
points of equioscillation. starting positively.

Thus, by Theorem 2.1,

f1 ~ S +((g - eJ;.) - (g - dfd)) = S t (dfJ - eJ;.) ~ S (dhd - ehc )'

Since d> e, S (dh d - eh c ) = n, and the sign pattern starts negatively.
Hence n = S f (( g - eJ;.) - (g - dJ;J)) and the sign pattern thereof must also
start negatively. This is only possible (Proposition 2.3) if

II g - ej;·llf < II g - dJ;, Iii'

It remains to prove statement (v) of the theorem. Let f*(x) =
.UIK(x.y)h*(y)dy denote the unique function in 1"" for which
min(lIg-e'f :fE1""f=llg-e*f*t. Assume gcke*f*. Since
f* E 1'". it is certainly true that S (h *) = k ~ n. and if S (h *) = n. then
since minlllg-e*fll JJ: fE j';; ~ = min~ Ilg -e*fIIJ: fE. ,,~, (g-e*f* )(x)
exhibits at least n + I points of equioscillation, starting negatively. Let I
denote the number of points of equioscillation of (g - e* f* )(x).

LEMMA 4.9. I? max1f1 + I, k + 2f.

Proof For e > e*. (g - L:t;.)(X) exhibits exactly f1 + I points of
equioscillation. starting positively. Because Iimclc. J;.(x) = f *(x). and
g ck e*f *, (g - e*f * )(x) exhibits at least n + I points of equioscillation.
Thus I? f1 + I. Furthermore if 1= f1 + I. then these points of equioscillation
start positively. However, if k = f1 (the only case we must yet consider) then
I? n + 2. Otherwise we contradict the orientation of the sign pattern of the
equioscillations of (g - e* f*)(x).

This proves the theorem.
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Let c )0, f- E -Y,~ be such that minlllg-cfllc[:c)O, fE -Y ll f=
II g - c-f and c+ ) 0, f+ E-Y,; be such that minlll g - cf : c) 0,
/ E -Y,; ~ = II g - c +f i Ilx' To obtain additional information on the number
of equioscillations of (g - c -f - )(x) and (g - c +f + )(x), it is necessary to
discuss a more general minimum problem.

Set /~, =. -Y,~ U -Y,~. We shall consider the problem

(Note that from Theorem 4.2, the functions c+/+ and c-f are the only
possible solutions to this problem.)

THEOREM 4.3. There exists a unique solution cJ, c) 0, J E /~,' to the
problem

minill g - cfll! : f E· ;~,' c) Of·

1/ g ok cJ, then c] is uniquely characterized by the fact that (g - ch(x)
equiosci//ates on at least n + 2 points.

An immediate consequence of the theorem is the following corollary.

COROLLARY. II g - c 'f + II, ok II g - c -f Ilf unless c I = C = O.
Furthermore if, say, II g - c +/' II" < II g - c / II" then (g -- C if + )(x)
equiosci//ates on at least n + 2 points and (g - cI )(x) equiosci//ates all

exactly n + 1 points. (If II g - c -/ 11./ < II g - c Ie /1/, then the reverse
holds. )

Various methods exist for proving Theorem 4.3. We shall not present a
proof here. Suffice it to say that the set Ic /~, : C ) 0 f is a class of vari sol vent
functions all of degree n + I. We can therefore apply Theorem 7.3 of

Rice 111/.
For fixed g E CI 0, 11, the values c' and c , as defined above, depended

on the choice of n. Let us indicate the dependence on . /' ,: and by setting
c' (n) = c+ and c-(n) = c. We have no way of determining which of c (n)

and c (n) is smaller except by calculating II g - c + (n)f' III and
II g - c (n)/- . However, an immediate application of the definitions and
the fact that ;4

11
c; ;';, 1 c; t!f (and the analogous statement for .) does

give this next result.

PROPOSITION 4.4. For fixed g E CI 0, 11,

c+(n),c(n)~c+(n+ l),c (n+ 1).



166 A. PINKUS

5. GENERALIZATIONS TO NONNEGATIVE MEASURES

Let 1/ denote the set of finite Borel measures on 10. 11 and

)I: f(x) = 1,,1 K(x. y) df1(y).f1 E: 1/.f1:) 0(.

where by f.1 :) 0 we mean that f1 is a nonnegative measure. We are interested
in the problem of approximating a function g E: qO. 11 by functions in 17{.
The following result and its proof parallel those of Theorem 3.1.

THEOREM 5.1. Let g E: qO. 11\ 17, and K(x. y) be an STP kernel. Then

min11Ig~'fli,:fE: 17,1

is uniquely attained by f* E: 17{ of the form

\,
f*(x) = '" arK(x, ¢;*).

i 1

(2)

where ,11,1 is a nonnegative integer. aF' > O. i = L. ... M. and
o(, ¢~ < ... < ¢~ (, 1. Furthermore. f*(x) is uniquely characterized as
fallaH'S.

(l) If M = O. i.e.. f* (x) == O. then there exists an x * E: 10, Ilfor H'hich
g(x*) = -II gil { .

(II) If M:) 1, and

(i) o< ¢~ < '" < ¢~ < I, then (g-f*)(x) equioscillates on at
least 2M + 1 points, starting negatively.

(ii) o= ¢~' < ... < G < L then (g - f*)(x) equioscillates on at
least 2M points. starting positively.

(iii) 0< a < ... < ¢~ = 1, then (g - f*)(x) equioscillates on at
least 2M points, starting negatively.

(iv) 0= ¢:" < ... < ¢~ = 1. then (g-f*)(x) equioscillates 011 at
least 2M I points. starting positively.

Theorem 5.1 is similar to Theorem 3.1. However. before entering into the
analysis thereof. let us note that such a theorem holds essentially as a
limiting case of Theorem 3.1. What we shall now provide is a sketch. rather
than a proof.
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In Theorem 3.1, let l(y) = °and u(y) =A, where A is some large constant
which we shall eventually send to infinity. Set

ffl = II.f(x) : f(x) = ( K(x, y) h(y) dy. °~ h(y) ~ A \1.
o ()

Then ffl C I'(f and lim4 Tx #;j n cia. II = R;x n cro, II. Theorem 3.1 tells
us that for each gEClO, II\ffCf (~gEClO, 11\111), there exists a unique
approximant Ii E 111 , This unique approximant is characterized as follows.

There exists a nonnegative integer N(A), and knots

such that either

(a)
'(i I I('/)

fi(x) = A ~ I K(x, y) dy
; even· {,iLll

and (g - 11)(x ) equioscillates on at least N(A) + I points, starting
positively. or

(b)
.t.;, IU)

Ii(x) = A \ 'I K(x, y) cZl'
i odd 0 (,(./)

and (g ~ 11)(x) equioscillates on at least N(A) + I points. starting
negatively.

Since O<minjllg-fIIJ:fE ffjl~llgllJ <00, and IIIi ~21Jg1[J

for all A, it follows that both N(A) andfl(x) remain bounded as A T00. This

is possible only if lim, ~J(~i" I (A) - ~i(A» = °for j even in case (a) and j
odd in case (b). In fact we must have

·(,.1(·11

lim A I K(x, y) cZl' = G;K(x, ¢;).
l---.r "li(.-I)

where G i;:' 0, and ~/A), ~i rt (A) -> ~;, where again this holds for j even in
case (a) and j odd in case (b). In other words, knots must either come
together in pairs or run off to one of the endpoints. For this reason, the
optimal f*(x) is of the form (2), and the number of equioscillations is essen
tially double the number of knots, with the orientation as given. As was
stated, this is not a proof. although it might be made rigorous. We prefer.
mainly for technical reasons, to give a more direct proof.

We first prove that if f *(x) exists, satisfying condition (I) or (II), then it
is the unique solution to our problem.
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LEMMA 5.1. Assume that there exists an f* of the form (2) satisfving
condition (I) or (II) of Theorem 5.1. Then f* is the unique best approximant
to g from /(y.

Proof Assume M=O. i.e.. f*=O and g(x*)=-llgIIJ for some

x*EIO,II· Let fEt'r, satisfy Ilg-IIIJ(.llgll/' Then
-g(x*)+(g-.f)(x*)~O. and thus f(x*) (.0. Since I(x*)=
.1'(\ K(x*. y) dlJ(Y), where IJ E .Il. IJ ~ 0. and mino l I K(x*. y) ~ a> 0. it
follows that dlJ =0. i.e., f =0.

We shall now assume that M ~ I. We prove the result only under the
assumption (II)(i). The other cases are proven in a similar manner. Assume
that

II . I

I*(x) = \. a;K(x. ~n (=1 K(x. y) dlJ*(Y)).
; I - II

where at>O. i=I ..... M and O<~t<···<~.~<I. and (g--f*)(x)
equioscillates on at least 2M + I points. starting positively. Let f E t'rJ •

where f(x) = .1':) K(x, y) dlJ( y). IJ E .1l.1J ~ 0. and assume that II g - IiI f (.

II g -- f* Ilf . The equioscillations of (g-- I* lex) imply that

S ' (( g - I *) - ( g -- f)) ~ 2M

and equality holds only if the sign pattern begins negatively. By
Theorem 2.1.

S . (( g - I *) -- (g - f)) = S ' (f -- f *) (. S (u - 1/ * ).

From the form of IJ and 1/ *. S (j1 - IJ *) (. 2M, and equality implies that the
sign pattern begins positively. Thus we contradict Theorem 2.1 (ii) and
uniqueness is proven.

LEMMA 5.2. There exists an I* E ~I for which

inf(11 g - It :f E t'rf f = II g - I*

Proof Since the zero function is in t'r, . we have
inf{11 g - III :I E #'xJ (.11 gilI which easily implies that it suffices to
consider only IE #'y satisfying IIIII" (.211 gil . K(x. y) is STP and
therefore inflK(x, y): x, y E 10, II ~ ~ a> 0. These facts together imply that
the set

#'{ n U: IIIIII (.211 gil" f

is compact for each fixed g E ciO. 11. Thus the infimum is attained.



BEST APPROXIMATIONS BY SMOOTH FUNCTIONS 169

Let f*(x) = .1"(\ K(x, y) dfJ*(Y) denote a best approximant to
g E erO, 11\ 17, from 17/.

LEMMA 5.3. (g-f*)(x) equioscillates on at most a finite number of
points.

Proof The proof is exactly that given in Lemma 3.2.
To every nonnegative finite Borel measure fJ there exists the decomposition

fJ = fJl + fJ c '

where ,111 and fJ c are also nonnegative finite Borel measures, ,111 IS purely
atomic and fJ c is continuous. Let fJ * =.ui + .u,*.

LEMMA 5.4. d.ut == 0.

Proof Assume that d.u,* i= 0. Let N + I denote the number of
equioscillations of (g - f*)(x). For a given a < fJ, let X1a.I!)(Y) denote the
characteristic function of the interval (a, fJ). Since dfJ,* i= 0, there exist points

O=(Jo «JI < ... <fJ\ <fJ\+1 = I, for which

.1

I XWi ,.ll,)(Y) d.u,*(y) > 0,
·0

i= I ..... N+ 1.

Set u,(x) = JI\ K(x, Y)Xl6 i'i.ili)(y)d.u/(y), i= I, ... ,N+ 1. Since K(x, y) is an
STP kernel, the set of functions 1uI'"'' UH I f forms a Descartes system on
[0, II. We now apply the proof of Lemma 3.3 to obtain a contradiction to
the optimality of f*(x). Thus d.ut = 0.

We have therefore so far proven that

H

f*(x) = \' a/K(x, ~n
i I

where a i* >°all i, the ~;* are distinct points of [0, II, and M is either a
nonnegative integer or infinity. We first show that M is not infinite. Let N be
as given above. Then,

LEMMA 5.5. M <N.

Proof If M >N + I, set ui(x) = K(x, ~n, for some i = I,... , N + 1, where
o<~t < ... < (~+ I < I. Then lUI ,... , us + I f is a Descarte system and we
again obtain a contradiction as in Lemma 5.4.

Since we know M to be finite, we can now show that f* must be of the
desired form.
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LEMMA 5.6. Let f* == O. Then there exists an x* E 10. I) for which
g(x*) = gl! J •

Proof Assume not. Thus g(x):?u~'llgIIJ for some u.>0 and all
x E (0. II. Form f(x) = .UI K(x. y) dy. Since K(x. y) is STP. /(x) > 0 on
(0. II. For c > O. sufficiently small II g .. 'fll, < II gil, . while If E II, . This
contradicts the optimality of f* == O.

We now assume that M:? I. and f*(x) = \':' I aiK(x. ~n. where aii' > O.
i = I ..... M. and 0 ~ (~ < '" < (~ ~ I. There are now four cases to consider
depending on whether a = 0 and/or ~.~ = l. The reasoning in all these cases
is the same except for technical details. As such we shall only deal with one
of the cases. namely.

LEMMA 5.7. Assume f*(x) =L:' I G;*K(x. ¢i). where at> o.
i = L ... M. and 0 <a < ... < (~ < I. Then (g - f*)(x) equioscillates 011 at

(east 2M + I points. starting negativeZl'.

Proof Set l',,(X) = K(x. (*). i = l... .. A1. and

J'

l'21 \(x) = ," K(x. .1') dy. i = I..... ,"'vJ + L
. ~i \

where ((;" = o. (;Y;t 1 = 1. Then {1'I' 1', ..... 1'2111 I i is a Descartes system on
10. JI. If V(X)=L71f l,ib j l'j(x). where bj(-I)i:?O. i= 1.. ... 2M+ 1. and
b2i ~ a7. i = L .. M. then f*(x) - cv(x) E II, for all [; E 10. II. Utilizing
perturbations of this form and the method of proof of Lemmas 3.3. 3.4. it
can be shown that Lemma 5.7 is valid.

This completes the proof of Theorem 5.1.
We wish to obtain an analogue to Theorem 4.1 for II,. The analogues of

f'll and ;",: differ depending on the parity of 11. We therefore define the
following four sets. For /1:? I. let

,,11 ,

Q I \ \. G f/( \. ;:). a '> 0 0 - C ,/ " <' ". <," .- 1i
2/1:::= ) 1~1 il\..~ ~ Si . '1/ • - '-:.1 "- ~:" " ~n. I - ,~

Qil1 1= \'aiK(x'~j):ai>0.O=~I<~2<"·<'~II<1\'.
i I
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while we set Qo = jOf (i.e., only the zero function) and Q~ is not defined
(does not exist). The plus and minus above the Q" indicates whether a knot
exists at zero or not. Note that unlike )"',; and,)",,,, the sets Q ,; and Q" are
not closed.

THEOREM 5.2. (I) Let g E Ci 0, II and assume that

inflll g~ fli i :JE Qm f > min~11 g~ft fE ~j f·

Then there exists a unique function f* E Q,,; for which

inflll g - fll, :fE Q;;,} = II g - f*

f; is unique!y characterized by the fact that (g- f*)(x) exhibits exact!y
III + I points of equioscillation, starting positive!y.

(II) Let g E CiO. 11 and assume that

infjll g - fll f :fE Q,;' f > minlll g ~ flly fE ~f f·

Then there exists a unique function f* E Q,:, for which

inflll g - fllx :fE Q~ f = II g - f*

I* is unique!y characterized by the Iact that (g - f* )(x) exhibits exact!y
III + I points of equioscillation, starting negative!y.

The above theorem should be viewed as a generalization of Section 5 of
Braess 12/. In our theorem, the boundary behavior is detailed.

The existence of f * of the desired form shall be proven by induction on
111. As was the case in the preceding theorems, the proof is via a series of
lemmas. We first prove the uniqueness of f* E Qm for which (g -- I*)(x)
suitably equioscillates. If Q,~ is replaced by QI~' then the proof is totally
analogous.

LEMMA 5.8. If I* E Qm and (g - f*)(x) equioscillates on m + I

points. then for all fE Om .Ii=. I*. II g ~ Iii f > II g - I* II i •

Proof Assume the exislence of an f E Om for which
g-fL ";:llg~f* . Thusm";:S'((g-f*)-(g-f))=S'(f-f*)·
We first consider the case where III = 2n. Set f*(x) = ";' I a/'K(x. ~n

and f(x) = 'E.;' I biK(.X'. ',J Therefore

II n

I(x)~I*(x)= '\' biK(x"IJ- '\' ai*K(x.(*).
iii I
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The functions jK(x, 17;)}7 1 U jK(x, ~in7 I span a Descartes system of order
at most 2n = m. Proposition 2.2(i) then implies that S +(f - f *) <2n ~ I =
m - 1. This contradiction proves the lemma for m = 2n.

Set m = 2n-- 1. Thus f*(x) = ~7 I atK(x, ~n and f(x) =
L7 -I biK(x, IIJ, where ~: = 'I" = 1. Therefore /(x) - /*(x)
~;' i biK(x, 'ii) - L7 i atK(x. ~n +(b" - a:) K(x, I). Again the functions
jK(x, II i n7 i U 1K(x, ~n f7 i U jK(x. I) I span a Descartes system of order
at most 2(n- I) + 1= m. We apply Proposition 2.2(i) to obtain a con
tradiction.

We shall in the course of the proof of the existence of / * assume, unless
otherwise stated, that

inflllg-fil, :fEQ,;,I>min11Ig /1It:IE #,1 (3)

for a particular choice of +. --. and m. Note that if (3) holds for Q ,;, or Q III •

then it also holds for Q ,;, I and Q In I'

To start the induction, we first prove the result for Q (I .

LEMMA 5.9. Theorem 5.2 holds for Q(I .

Proof We assume (3) holds for Qo' Since g E qo, II, there exists a
point x*E 10, 11 for which Ig(x*)I=llgllc.,,' If g(x*)=-lIgllcX>' then we
contradict (3) by Theorem 5.1. Thus g(x*)=llgII,. and there exists no
x E 10, 11 for which g(x) = -II gill'

The proof of the result for Q 1 and Q i is instructive and yet simple. Since
the proofs in these two cases are analogous, we only prove the theorem for

QI'

LEMMA 5.10. Theorem 5.2 is valid for Q 1 •

Proof We assume (3) to hold for QI (and thus for Qo ). Now.

QI = jaK(x. I): a >°I.

Since K(x, y) is STP, K(x. 1) > 0 and

minjK(x, I) :°<x < 1 f > 0.

Because (3) holds for Qo . there exists ayE 10, I] for which g( y) = II gil! .
while there does not exist an x for which g(x) = --II gil J' Consider
g(x) - aK(x, 1) as a varies from zero to infinity. Since
limu)cc(g(x) - aK(x, I)) = --00 uniformly for x E 10. I ], there must exist an
a* E (0, 00), and points X I .X2 E 10, 11 satisfying

g(xJ-a*K(x i , 1)= (-I)i+lllg(·)-a*K(., 1)llcL'
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i = 1, 2. If XI> x 2 ' or if there exist more than two points of equioscillation.
then from Theorem 5.1, we contradict (3). Thus x I < X2 and we are finished.

Because of the different nature of Q2n and Q2'n, we found it necessary, in
order to advance the induction, to develop two different methods of proof.
The first of these methods may be used to advance the induction for Qin'
Q;n 1 and Q2n- I' The second method is suitable for proving the result for
Q2,,' Q2+" .. 1 and Q2n _I' As such we shall prove the theorem for Q;~ and for
Q2n' The cases Qin I and Qb' 1 may be proven by either method.

LEMMA 5.11. Assume that Theorem 5.2 is mlid for Q/ and Qk •

k~ 2n- L and that (3) holds for Q;". Then Theorem 5.2 holds for Q;/I'

Proql Set gJ,) = g(x) - aK(x. I). We shall consider the best approx·
imation to go(x) (for a ~ 0) from Q,'" I' Set

We first claim that a o < 00. Assume that this is not the case. Let
I,(x) E Q{" I denote the unique best approximant to go(x) from Qin I' Thus
I,(x) > 0 for all x E 10. II and all a> 0, and f)x)/a is the unique best
approximant to g(x)/a-K(x, I) from Q;" I' Since minoc-xc-IK(x, 1»0.
there exists an ii> O. sufficiently large. such that g(x)/ii - K(x, 1) ~ 0 for all
x E 10. II. For every nonpositive function. the unique best approximant from

is the zero function. I;(.,)/5 is not the zero function. This contradiction
implies ao < 00.

For a E [0, ao) (ao > °by continuity considerations) set

"
- \'I,(x) - _ a;(a) K(x, ¢i(a»).

I 1

where a;(a) > 0, i = L..., n, and °= ¢I(a) < .,. < ¢n(a) < I. The function
(go - I, )(x) equioscillates on exactly 2n points, starting negatively. Since
ilfullf. ~ 211 g"ll" ' f,,(x) is uniformly bounded for a ~ Go and thus the coef
ficients a;(a) are uniformly bounded for a < ao. Therefore as aT (/0' there
exists at least a subsequence along which

>1

I,(x) -> I, (x) = \' ai(aO) K(x, ¢i(a O))'Il _

; 1

where aj(a o) ~ 0, i = 1,..., n, and 0= ';\(ao) ~ ... ,:;;; ';n(a o) ,:;;; 1. Furthermore,
(gau - fao)(x) equioscillates on at least 2n points, starting negatively.

We claim that f".,(x) E Qin-I' i.e., aj(ao) > 0, i = 1,... , n, and °=
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~J(Qo) < ... < ~n(Qo) < 1. ~ince (gao - Jao)(X) = g(X) - U~o(X) + QoK(x, 1)).
and Jao(x) + QoK(x, 1) E Qin' any other conclusion will contradict (3).

Since Jao(x) E Qin _ J and

(gao - Ja,)(x) must equioscillate at least 2n times, starting positively. This
fact together with the previous fact which said that (gao -- J"J(x)
equioscillates on at least 2n points, starting negatively. implies that
(gao - j;,o)(x) actually equioscillates on at least 2n + I points. Now
(gao - j~J(x) = g(x) - U;'o(x) -- QoK(x, 1)), and f*(x) = j;,o(x) +
aoK(x, 1) E Q;n' If (g - J*)(x) equioscillates on more than 2n + I points
or on 2n + I points, starting positively. then we again contradict (3) by
Theorem 5.1. This proves Theorem 5.2 for Q2n'

LEMMA 5.12. Assume that Theorem 5.2 is calid jbr Q" and QI..
k ,s;: 2n - I, and that (3) holds Jar Q 211' Then Theorem 5.2 holds for Q'11'

Proo}: Until now. we have always considered our approximations from
functions of the form J(x) = .I·i, K(x, y) d.u(y). Since K(x. y) is STP on
10, 11 X 10, II. it is also STP on 10,11 X 10, dl for all dE (0. II. Set

)

.d (
'(x(d)= f(x):f(x) = I K(x, Y)d.u(y),.uE,jj,.u~O,'

'0

the measure defined on 10, d I.
It is certainly true that everything we have proven so far in this section is

valid if we replace by tYf(d) except, of course, that our knots now lie in
10. dl· Let Q,:,(d) and QII/(d) be defined analogously to Q,;, and Q'/I except
that we are now considering the interval 10, dl rather than the interval 10. I I.
Since we have assumed that Theorem 5.2 is valid for Q" and Q" for
k,s;: 2n- 1. it also remains valid for Q" (d) and Q" (d) for k S 2n 1.

Set

do=supjd:d,s;: 1, infjllg-/lif :fEQ211 M)I

= min lllg-fli f :IE tYj(dlff.

As a reminder.

Q (d) \ \', a K(x- ;: ). a '> °°. e <' " -= d
l

l .2/1 1 = 1- 1 .• "I' i" '" <"1 • '" '" c,/I
i 1

Since (3) holds, then by continuity considerations it follows that do < 1.
while. as is easily seen, do ~ 0.
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For d> do let Id E Q2/1 _I(d) denote the unique function for which
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Thus j;l'() = L? I a;(d) K(x, ~;(d)), where a;(d) > 0, i == I,... , n,
o< ~,(d) < ... < ~/1(d) = d. and (g - Id)(X) exhibits exactly 2n points of
equioscillation on 10, II, starting positively.

We first prove that do> O. If do = 0, then it follows that g(x) - aK(x, 0)
exhibits. for some a? O. at least 2n points of equioscillation. This
contradicts (3). Thus do > O. As in Lemma 5.11, it is easy to see that letting

d 1do we obtain a function Id,,(X) = [? I a;(do) K(x, ~i(do)), where
a;(do)? O. i = L ... n, 0 <~I(do) < .. , < ~/1(do) = do· (g - le/o)(X) exhibits at
least 2n points of equioscillation, starting positively, and

infillg·- :/EQ2/1 l(do)}=llg-j;I"IIex. If Id"EQ2/1I(do). i.e.• either
knots coalesce together or to endpoints or aj(do) = O. then we contradict (3).

Thus aj(do) > O. i = 1,... , nand 0 < ~I(do) < ." < ~/1(do) = do < 1. Since
inflll g ..- It :/E Q2/1 I(do)[ = min111 g - III" :/E If'x(do)f. (g -- j;/o)(x)
exhibits at least 2n points of equioscillation, starting negatively. As in
previous proofs. this implies that (g - Ido)(x) exhibits at least 2n + 1 points
of equioscillation. Note, however. that le/o E Q2/1 since do < I, i.e., <:/1(do) is
no longer an endpoint. Any conclusion other than the desired one contradicts
(3) via Theorem 5.1.

This proves Theorem 5.2.
The knots of the unique approximants obtained in Theorem 5.2 exhibit

various interlacing properties. Assume that inf~11 g - IIIL: I E Q';' r >
minjlig- :/E R;,f. Let I,~ and I;;, denote the unique best approx
imants from Q,;, and Q/1;' respectively, to g.

PROPOSITION 5.3. Under the above assumptions. the knots 011,;, and 111I
slrictzr inter/ace.

Proof Assume that m = 2n - 1. Then 121/1 ,(x) = Y'? t ajK(x. ~i)' where
a j > O. 0 = ~I < ... < ~/1 < 1. and 1;/1 ,(x) = '5';' I biK(x, 'Ii)' where b j > O.
o < 'II < ... < '1/1 = 1. Independent of which of the two quantities

II g f 2/1 I ill and II g - 12/1 III/ is larger,

2n - 1<5 . (( g - f 2n I) ~ (g - 1;/1 I))

= 5 . (/;/1 1- I'll I)

= 5' (. \', ajK(x. ~j) - \'. bjK(x. 'Ii).) .
I I I I

Since lK(x'~j)f;' ,UjK(x,'lj)f;' I spans a Descartes system of order at
most 2n. it follows that 51 (L;' I aiK(x. ~k) - L;' I biK(x, 'Ii)) <2n - I.
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Equality must therefore obtain in all the above inequalities. Since a;. hi > O.
i = L. ..• n. equality in the last inequality holds by Proposition 2.2(ii) only if
the ~~d;' I and 11Jd;' I strictly interlace. Because ~I = O. '71/ = I. we in fact
have

~ I < '71 < ~, < ... < '7" I <~" I < '7,,·

This same argument proves the proposition for m = 2n.
A similar argument may also be used to prove the following result.

PROPOSITION 5.4. Let the assumptions of Proposition 5.3 hold and
suppose that m? 2. Then the knots of both f,~ and f", strictly interlace lhe
knots of both f,;, I and f", I' except where equality must hold al an
endpoinl.

This next fact concerning the interlacing of knots is proven in exactly the
same manner as was Proposition 5.3 (see Braess II, Theorem 6.31 for a
similar result).

PROPOSITION 5.5. Let the assumptions of Proposition 5.3 hold alld
suppose thai m? 3. Then the interior knots of f", slrictly il11erlace lhe
interior knots off';' 2' and the interior knots off ~ strictly interlace those of

/;;, ~.

The next theorem we present without proof since its proof follows much
the pattern of the proof of Theorem 5.1.

We are given a fixed interval Ia, b I. where 0 < a < h < 00. Set

_If()·j·()-\· ," "'0 II!.,'; - /. x. x - a"x • a" ~ ,a n .
';-0 \

Our problem is, for given g E Cia, b I. to solve

inf\1Ig - IIII : f Eli f.

THEOREM 5.6. For every g E Cia, b I lhere exists Q unique besl approx
imal11 I* E './. If g E Y then f*(x) = L~ 1 a~xi'. where N is a
nonnegative (finite) integer. ai; > 0, k = I•... , N, and 0 ~ i l < '" < i\ < 00.

f*(x) is uniquely characterized by the following conditions: Set

b;=-I

=0

i E lil , i\}

iE lil' ,i"f.

Then (g - f *)(x) exhibits at least S ' (bo • hi ,... ) + I poil11s of equiosci!lation.
and if the number of equioscillations is exactly S + (bo• b I"") + I then lhe
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sign pattern of the vector b = (bo' b) ,... ) (that given in determining
S I (bo • b l •..• )) and the sign pattern of the equioscillations agree.

Remark. Having begun this paper with a discussion of the result of
Sattes on the Sobolev space W;;-), we feel it necessary to discuss, at least
superficially, the situation wherein K(x, y) is totally positive rather than
strictly totally positive and, also the case of B~2. The difference between the
results obtained in the last three sections and the results in the case of the
same minimum problem where the kernel K(x, y) is only totally positive is
simply that we lose the uniqueness of the best approximant. The fact that
there exists a best approximant which satisfies the conditions given in
Theorems 3.1. 4.1. 4.2. 4.3.5.1, and 5.2 is a result of a standard smoothing
technique (see Karlin 16 J) and the fact that for totally positive kernels
Theorem 2.1 remains valid if S - {j.1) is replaced by S (j1).

The set B I;') is not quite of this form. However, every f E BI;I may be
written as

I' I I.I
./(x) = ". a;x i + I (x -- .1')'1 ~(lJ(y) dy.

i 0 (r - I)! ·0

The kernel K(x. y) = (x - .1')'. lis totally positive. The difference here is due
to the existence of the functions I, x,.... x" I. These functions alter our result
(aside from the uniqueness already lost) only in that there will now be an
additional r points of equioscillation (see, e.g., 191 where a similar situation
occurs ).
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